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1. Introduction

In this section we review several basic concepts that are used to define support vector
machines (SVMs) and which are essential for their understanding. We assume that the
reader is familiar with real coordinate space, inner product of vectors, and vector norm (a
brief review of these concepts is given in Appendix).

1.1. Classification problem

We consider a pattern classification problem which is formulated in the following way.
There is a large, perhaps infinite, set of objects (observations, patterns, etc.) which can be
classified into two classes (that is, assigned to two sets). We do not have an algorithm that
does this classification, but we have a sample of objects with known class labels. Using
these classification examples, we want to define an algorithm that will classify objects from
the entire set with the minimum error.

Objects in a classification problem are represented by vectors from some vector space V .
Although SVMs can be used in arbitrary vector spaces supplied with the inner product or
kernel function, in most practical applications vector space V is simply the n-dimensional
real coordinate space Rn. In this space, vector x is a set of n real numbers xi called the
components of the vector: x = (x1, x2, ..., xn).

A sample of objects with known class labels is called a training set and is written asTraining set

(x1, y1), (x2, y2), ..., (xl, yl),

where yi ∈ {−1, 1} is the class label of vector xi, and l is the size of the training set.
A classification algorithm (classifier) is represented by a decision functionDecision

function
f(x) : V → {−1, 1}

such that f(x) = 1 if the classifier assigns x to the first class, and f(x) = −1 if the classifier
assigns x to the second class.
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1.2. Equation of a hyperplane

In coordinate space Rn equation
〈w,x〉+ b = 0 (1.1)

n∑
k=1

wkxk + b = 0

defines a (n − 1)-dimensional set of vectors called hyperplane. That is, for a given non-
zero vector w = (w1, w2, ..., wn) ∈ Rn and a scalar b ∈ R, the set of all vectors x =
(x1, x2, ..., xn) ∈ Rn satisfying equation (1.1) forms a hyperplane (Figure 1a). We will
denote this hyperplane by letter π or by π(w, b).

The term “hyperplane” means that the dimensionality of the plane is by one less than
the dimensionality of the entire space Rn. For example, a point is a hyperplane in R; a
line is a hyperplane in R2; a plane is a hyperplane in R3; a three-dimensional space is a
hyperplane in R4, and so on.

Vector w is called the normal vector of the hyperplane, and number b is called thew – normal
vector
b – intercept

intercept of the hyperplane. The normal vector defines the orientation of the hyperplane
in space, while the ratio between ||w|| and b (not the intercept alone) defines the distance
between the hyperplane and the origin of space1. The normal vector is perpendicular to
all vectors parallel to the hyperplane. That is, if z = x1 − x2 such that 〈w,x1〉 + b′ = 0
and 〈w,x2〉+ b′ = 0 for some b′ then 〈w, z〉 = 0.

Hyperplane π divides coordinate space Rn into two parts located sidewise of the hyper-Half-spaces
plane, called positive and negative half-spaces: (Rn)+π and (Rn)−π . The positive half-space
is pointed by the normal vector of the hyperplane (Figure 1b). For any vector x ∈ (Rn)+π
we have 〈w,x〉+ b > 0, while for any x ∈ (Rn)−π we have 〈w,x〉+ b < 0.
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Figure 1: (a) Hyperplane in two-dimensional space R2 is a line. For the depicted line we
can infer that b < 0, w1 > 0, w2 > 0. (b) Negative and positive half-spaces defined by
hyperplane π(w, b).

1The origin of space is zero vector 0 = (0, 0, ..., 0); in figures, we denote it by capital letter O.
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Figure 2: Understanding the meaning of hyperplane parameters w and b (see text).

A single hyperplane is defined by infinite number of parameters w, b. Indeed, multi-Ambiguity of
hyperplane
parameters

plying equation (1.1) by arbitrary constant c 6= 0 we see that parameters cw, cb define the
same hyperplane2. In other words, if two hyperplanes π1 and π2 are defined by parameters
w1, b1 and w2, b2, and w2 = cw1, b2 = cb1, then π1 and π2 are the same hyperplanes.
Since we can arbitrary scale parameters w, b defining fixed hyperplane π, we can choose
w, b such that ||w|| = 1. Note that this pair of parameters is unique for any hyperplane3.

The distance ρ(x, π) between a vector x and a hyperplane π(w, b) can be calculatedDistance
between
vector and
hyperplane

according to the following equation:

ρ(x, π) =
〈w,x〉+ b

||w||
. (1.2)

Note that this is a signed distance: ρ(x, π) > 0 when x ∈ (Rn)+π , and ρ(x, π) < 0 when
x ∈ (Rn)−π . Obviously, ρ(x, π) = 0 when x ∈ π. If ||w|| = 1, then the equation for the
distance is simply ρ(x, π) = 〈w,x〉+ b.

It follows from equation (1.2) that the distance between the origin of space and hyper-
plane π is equal to b

||w|| . This simple fact allows us to make several useful observations
regarding the position and orientation of the hyperplane in space, and how parameters b
and w affect them. These observations will help us later in considerations related to the
maximum margin hyperplane (subsection 2.1).

1. The origin of space is in the positive half-space of the hyperplane π(w, b) if b > 0,How w and b
define position
of hyperplane

and in the negative half-space if b < 0. If b = 0 then the hyperplane passes through
the origin (Figure 2a).

2. By increasing the absolute value |b| of the intercept, we move the hyperplane parallel
to itself in the direction from the origin. By decreasing |b|, we move the hyperplane
towards the origin (Figure 2a).

3. By changing the normal vector w in a way that preserves its norm, we move the
hyperplane in a circle around the origin; the radius of the circle is |b|

||w|| (Figure 2b).

2Note that if c < 0 then the positive and negative half-spaces will swap around.
3We can also consider parameters −w,−b which define the same hyperplane (and of course

|| −w|| = ||w|| = 1), but the positive and negative half-spaces will be swapped around.
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4. By reducing the length of the normal vector w in a way that preserves its direction,
we move the hyperplane parallel to itself from the origin. By increasing the length of
the normal vector w in a way that preserves its direction, we move the hyperplane
towards the origin (Figure 2c). Thus, a hyperplane can be moved parallel to itself
not only by changing intercept b, but also by scaling normal vector w.

1.3. Hyperplane separating two classes. Margin

We say that a hyperplane π(w, b) separates two classes (sets) of vectors C1 and C2 if either

〈w,x〉+ b > 0, ∀x ∈ C1

〈w,x〉+ b < 0, ∀x ∈ C2
(1.3)

or
〈w,x〉+ b < 0, ∀x ∈ C1

〈w,x〉+ b > 0, ∀x ∈ C2.

Two classes are called linearly separable if there exists at least one hyperplane that sep-Linearly
separable
classes

arates them. If hyperplane π(w, b) separates classes C1 and C2 according to (1.3) then
decision function

f(x) = sgn{〈w,x〉+ b} =

{
1, if 〈w,x〉+ b ≥ 0
−1, if 〈w,x〉+ b < 0

(1.4)

gives us a classifier that correctly classifies all vectors from C1 and C2.
It is clear that for two linearly separable classes that are finite there always exist an

infinite number of hyperplanes (with differently oriented w and different b) that separate
them. Which one should be used to define a classifier? Support vector machine chooses
the one with the maximum margin. For a hyperplane π separating classes C1 and C2, its
margin m(π,C1, C2) is defined as the distance between π and class C1, plus the distanceMargin
between π and class C2 (Figure 3a):

m(π,C1, C2) = ρ(π,C1) + ρ(π,C2).

Here, the distance between hyperplane π and a set of vectors C is defined as the minimal
distance between π and vectors from C:

ρ(π,C) = min
x∈C
|ρ(π,x)|.

Note that in this definition we are using the absolute value of the signed distance ρ(π,x)
defined by equation (1.2), in order for this definition to make sense when all, or some,
vectors from C lie in the negative half-space of π.

Equivalently, the margin can be defined as the distance between classes C1 and C2

measured along the normal vector w (Figure 3b). If Cw1 is the set containing projections of
all vectors from C1 onto the line parallel to vector w, and Cw2 is the set containing similar
projections of all vectors from C2, then

m(π,C1, C2) = ρ(Cw1 , C
w
2 ),
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Figure 3: (a) Margin of hyperplane π is the distance from π to the first class (white points)
plus the distance from π to the second class (black points). (b) Equivalently, it can be
defined as the distance between two classes measured along the normal vector w of the
hyperplane.

where
ρ(Cw1 , C

w
2 ) = min

x1∈Cw1
x2∈Cw2

ρ(x1,x2).

Note the following two properties of margin. First, as long as the hyperplane lies
between classes C1 and C2, its margin only depends on the normal vector w, and does not
depend on the intercept b. Second, for any hyperplane separating two classes, its margin
can not be larger than the distance between the classes:

m(π,C1, C2) ≤ ρ(C1, C2),

where
ρ(C1, C2) = min

x1∈C1
x2∈C2

ρ(x1,x2).

Clearly, there exist infinitely many hyperplanes with the maximum margin equal to ρ(C1, C2),
all of which are perpendicular to the shortest line segment connecting C1 and C2 (Figure
4).
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Figure 4: All five hyperplanes shown here have the same margin equal to ρ(C1, C2).
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2. Maximum margin hyperplane for linearly separable classes

Suppose we have two linearly separable classes of training vectors. Support vector machine
defined on such a training set is a classifier with decision function

f(x) = sgn{〈w,x〉+ b}, (2.1)

where 〈w,x〉 + b is an equation of hyperplane that separates the two classes (see (1.3)),
has maximum margin, and is equidistant from both classes (Figure 5). In this section
we consider an optimization problem which is being solved in order to obtain parameters
w, b of this hyperplane, and explain where this problem comes from. We also consider
important properties of the maximum margin hyperplane. Some concepts from calculus
and optimization theory that are used in this section are briefly reviewed in Appendix.
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Figure 5: Maximum margin hyperplane for two linearly separable classes: d = ρ(π,C1) =
ρ(π,C2) is maximized.

2.1. Primary optimization problem

Parameters w, b of the SVM hyperplane can be found as a solution to the following opti-
mization problem:

1

2
||w||2 → min

w,b
(2.2)

subject to

〈w,x〉+ b ≥ 1, ∀x ∈ C1 (2.3)

〈w,x〉+ b ≤ −1, ∀x ∈ C2, (2.4)

where C1 and C2 are two classes of training examples.
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In coordinate form, this problem is written as

1

2

n∑
k=1

w2
k → min

w,b
(2.5)

s.t.
n∑
k=1

wkxk + b ≥ 1, ∀x ∈ C1 (2.6)

n∑
k=1

wkxk + b ≤ −1, ∀x ∈ C2. (2.7)

Note that parameter b is one of the optimization variables, although it is not present in
the objective function (2.5). Two sets of constraints (2.6), (2.7) can be written in a unified
way as

yi

(
n∑
k=1

wkxik + b

)
≥ 1, i = 1, 2, ..., l. (2.8)

where yi = 1 if xi ∈ C1, and yi = −1 if xi ∈ C2, l is the total number of training vectors
xi, and by xik we denote the k-th component of vector xi.

Optimization problem (2.5)-(2.7) has quadratic objective function (2.5) and linear con-
straints (2.6), (2.7). Such problems are called quadratic programming problems. Their
properties are well known and there are quite efficient algorithms for solving these prob-
lems.

Note that objective function (2.5) is strictly convex (since the matrix of its second-Primary
problem has
unique
solution

order derivatives – the Hessian – is positive definite), and the feasible region defined by
linear inequalities (2.6)-(2.7) is also convex. Therefore, this problem will have a unique
solution (global minimum) w∗, b∗4. In case when two classes are not linearly separable, the
feasible region defined by constraints (2.6)-(2.7) will be empty, and the problem will have
no solution. It will also have no solution when the training set contains only one class.

Why parameters of the maximum margin hyperplane can be found by solving problem
(2.2)-(2.4)? To answer this question, let us transform this problem into an equivalent one
that has more apparent geometrical interpretation. First, minimizing 1

2 ||w||
2 is equivalent

to minimizing ||w||, which in turn is equivalent to maximizing 1/||w||, so we can rewrite
problem (2.2)-(2.4) as follows:

1

||w||
→ max

w,b

s.t.

〈w,x〉+ b ≥ 1, ∀x ∈ C1 (2.9)

〈w,x〉+ b ≤ −1, ∀x ∈ C2. (2.10)

4Note that the maximum margin hyperplane can be defined by infinite number of parameters w, b; it is
the solution of problem (2.5)-(2.7) which is unique.
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Second, we can divide constraints (2.9), (2.10) by a positive number ||w||:

1

||w||
→ max

w,b

s.t.

〈w,x〉+ b

||w||
≥ 1

||w||
, ∀x ∈ C1

〈w,x〉+ b

||w||
≤ − 1

||w||
, ∀x ∈ C2.

Recalling that 〈w,x〉+b||w|| is the distance ρ(π,x) between hyperplane π(w, b) and point x (see

equation (1.2)), and introducing new variable d = 1/||w||, we get the following problem
which is equivalent to (2.2)-(2.4):

Primary
problem in
geometrical
terms

d→ max
w,b

s.t.

ρ(π,x) ≥ d, ∀x ∈ C1 (2.11)

ρ(π,x) ≤ −d, ∀x ∈ C2. (2.12)

That is, find parameters w, b that maximize margin m = 2d between π, C1 and C2.
Geometrically, connection between parameters w, b and d can be illustrated in theSolving

primary
problem:
geometrical
insight

following way. Let us draw a spherical hull of radius d = 1/||w|| around each training
point x. Consider some feasible hyperplane π(w, b). According to constraints (2.11),
(2.12), this hyperplane must separate our points together with their hulls (Figure 6a).
Now suppose we want to increase d twofold. Since d is a function of ||w||, we have to
decrease ||w|| twofold. If we divide vector w by two, we move our hyperplane parallel to
itself further from the origin. However, if we divide by two vector w and intercept b, we
do not move the hyperplane. This way, downscaling w and b, we increase the radius of
the hulls while keeping hyperplane π in the same position and orientation, until at least
one hull touches it (Figure 6b). If we have space to move π parallel to itself away from the
hull that touches it, we can do it by changing b only, and let the hulls grow further. At
some point, our hulls will reach maximum size d achievable for hyperplanes with normal
vectors collinear to w (Figure 6c). If we have space for the hulls to grow further, we can
change orientation of π by changing components of vector w, while keeping ||w|| equal to
the current value of 1/d (see the end of subsection 1.2). Doing so and adjusting b, we keep
π feasible and increase d until we arrive to the optimal configuration (Figure 6d).

2.2. Dual problem

The concept of duality plays an important role in the optimization theory. It turns out
that for many optimization problems we can consider associated optimization problems,
called dual, such that their solutions are related to the solutions of the original (primal)
problems. In particular, for a broad class of problems the primal solutions can be easily
calculated from the dual ones.

In general, solving the primal problem and solving the dual will have its own computa-
tional advantages and disadvantages, so it is our choice which one we prefer to deal with.
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Figure 6: Finding maximum margin hyperplane: geometrical insight.

In case of maximum margin hyperplane, the dual formulation has two major benefits: its
constraints are easier to handle than constraints of the primal problem, and it is better
suited to deal with kernel functions (see section 4). This is why it is the dual problem
which is actually solved by most SVM packages5. Besides computational considerations,
the dual formulation allows us to establish the concept of support vectors – the training
points that define orientation and intercept of the maximum margin hyperplane.

So let us recall the primary optimization problem for finding maximum margin hyper-
plane π(w, b):

1

2

n∑
k=1

w2
k → min

w,b
(2.13)

s.t.

yi

(
n∑
k=1

wkxik + b

)
≥ 1, i = 1, 2, ..., l. (2.14)

The dual problem for (2.13)-(2.14) in its general form is written asDual problem
in general
form Ld(α)→ max

α
(2.15)

s.t.

αi ≥ 0, i = 1, 2, ..., l, (2.16)

5For some interesting discussion on primary and dual problems for SVM, see paper by Olivier Chapelle
“Training a support vector machine in the primal”.
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where α = (α1, α2, ..., αl), Ld(α) is the dual function defined asDual function

Ld(α) = min
w,b

L(w, b,α), (2.17)

and L(w, b,α) is the Lagrangian defined asLagrangian

L(w, b,α) =
1

2

n∑
k=1

w2
k −

l∑
i=1

αi

(
yi

(
n∑
k=1

wkxik + b

)
− 1

)
. (2.18)

The dual can be written in a more explicit form. Since the Lagrangian is a convex function
in our case6, for any α pair (w∗, b∗) is the global minimum of L(w, b,α) if and only if

∇w,b L(w∗, b∗,α) = 0, (2.19)

where ∇w,b L denotes the gradient of function L (vector of its first derivatives with respect
to wi and b), and 0 denotes the null vector from Rn. Thus, Ld(α) = L(w∗, b∗,α) given
that (2.19) is satisfied, and therefore the dual problem (2.15)-(2.16) can be stated as7

L(w, b,α)→ max
w,b,α

(2.20)

s.t.

∇w,b L(w, b,α) = 0 (2.21)

αi ≥ 0, i = 1, 2, ..., l. (2.22)

The constraint (2.21) states that

∂L

∂wk
= 0, k = 1, 2, ..., n

∂L

∂b
= 0,

which is equivalent to

wk =

l∑
i=1

αiyixik, k = 1, 2, ..., n (2.23)

l∑
i=1

αiyi = 0.

Finally, substituting (2.23) into (2.18), we rewrite the dual problem (2.20)-(2.22) as

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyj〈xi,xj〉 → max
α

(2.24)

s.t.

l∑
i=1

αiyi = 0 (2.25)

αi ≥ 0, i = 1, 2, ..., l. (2.26)

6Because it is a convex function minus linear functions.
7This form of the dual problem is also know as the Wolfe dual.
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Like the primary problem, the dual is also a quadratic programming problem, but con-
straints (2.25)-(2.26) are easier to handle than constraints (2.14). This is one of the reasons
why many SVM packages solve the dual problem instead of the primal.

The Hessian of objective function (2.24) (matrix of its second derivatives) with respect
to variables αi has the form

−1× [yiyj〈xi,xj〉]l×l. (2.27)

Matrix [yiyj〈xi,xj〉]l×l is congruent8 to [〈xi,xj〉]l×l, which is the Gramian matrix for
vectors x1,x2, ...,xl. The Gramian matrix is always positive semidefinite9, therefore matrix
(2.27) is negative semidefinite, which means that problem (2.24)-(2.26) is concave (but
not strictly concave). A concave problem may have a single global maximum or many
global maxima. Therefore, generally speaking, the solution of problem (2.24)-(2.26) is not
unique, while the solution of the primal problem (2.13)-(2.14) is. We will give an example
of problem with several optimal dual solutions in subsection 2.3 devoted to support vectors.

What is the connection between the dual problem (2.24)-(2.26) and the primal problemConnection
between
primary and
dual problems

(2.13)-(2.14)? If the primal has solution, so does the dual, and vice versa. If the primal
is unbounded (which happens if all training vectors belong to a single class), then the
dual is infeasible; if the primal is infeasible (which happens if two classes are not linearly
separable), then the dual is either infeasible or unbounded.

What is the connection between the dual solution α∗ and the primal solution (w∗, b∗)?
Rewriting equation (2.23) in vector form, we get:

w∗ =
l∑

i=1

α∗i yixi. (2.28)

Intercept b∗ can be found from any of the constraints (2.14) that holds as an equality10.
For example, if

n∑
k=1

w∗kx1k + b∗ = 1

then

b∗ = 1−
n∑
k=1

w∗kx1k.

Let us recall that (w∗, b∗) is the unique global solution to the primal problem, while
α∗ may be any of numerous global solutions to the dual one. It is also worth to note that
in our case there is no duality gap between the primary and the dual objective functions,
which means that

1

2

n∑
k=1

(w∗k)
2 =

l∑
i=1

α∗i −
1

2

l∑
i=1

l∑
j=1

α∗iα
∗
jyiyj〈xi,xj〉 .

8Matrices A and B are called congruent if there is nonsingular matrix P such that A = PTBP . If A
and B are congruent and A is positive semidefinite, then B is also positive semidefinite.

9Matrix A is called positive semidefinite if xAxT =
∑n
i=1

∑n
j=1 aijxixj ≥ 0 for any x.

10Constraints that hold as equalities correspond to training vectors called support vectors; there always
will be at least two such constraints (see subsection 2.3).
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2.3. Support vectors

We saw in the previous subsection that if (w, b) is the primal solution of (2.13)-(2.14), and
α is the dual solution, then

w =

l∑
i=1

αiyixi. (2.29)

This means that the normal vector w of the maximum margin hyperplane expands into
training vectors xi with coefficients αiyi, where

l∑
i=1

αiyi = 0, (2.30)

αi ≥ 0, and yi = 1 if xi ∈ C1, and yi = −1 if xi ∈ C2. Training vectors xi such that αi > 0Support
vectors are called support vectors of the maximum margin hyperplane.

We see that support vectors are the only vectors from the training set that determine
the position of the maximum margin hyperplane. Where are these vectors located? To
answer this question, note that vector α = (α1, α2, ..., αl) used in expansion (2.29) is a
minimum of the Lagrangian (2.18) for given w and b. Therefore, αi can be nonzero only if

yi

(
n∑
k=1

wkxik + b

)
− 1 = 0, (2.31)

because if

yi

(
n∑
k=1

wkxik + b

)
− 1 > 0 (2.32)

then αi must be zero11. Equation (2.31) is equivalent to

〈w,xi〉+ b = 1, if xi ∈ C1, (2.33)

and to
〈w,xi〉+ b = −1, if xi ∈ C2. (2.34)

Dividing these equations by a positive number ||w||, we get:

〈w,xi〉+ b

||w||
=

1

||w||
, if xi ∈ C1

〈w,xi〉+ b

||w||
= − 1

||w||
, if xi ∈ C2.

On the left-hand side of these equation we now have the signed distance ρ(π,xi) betweenSupport
vectors lie on
the margin
between two
classes

hyperplane π(w, b) and vector xi. Comparing them with constraints (2.11)-(2.12) of the
primary optimization problem we conclude that any support vector xi is a vector closest
to the optimal hyperplane, and the distance between the two is d = 1/||w||. Another way
to put it is to say that support vectors lie on the margin between two classes (Figure 7).

11Assume (2.32) holds and αi is not zero. Then α = (α1, ..., αi, ..., αl) cannot be a minimizer of the
Lagrangian, since vector α′ = (α1, ..., 2αi, ..., αl) will render smaller value of the Lagrangian than vector α.
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Figure 7: Support vectors (circled) are those training vectors that are closest to the sepa-
rating plane. They are said to lie on the margin between two classes.

Note that in section 1 the margin was defined as certain distance, that is – as a number.
However, sometimes it is convenient to use term “margin” to refer to a part of space – the
gap between the hyperplane and the classes. For the maximum margin hyperplane, this
gap is the space between two hyperplanes: 〈w,x〉 + b = −1 and 〈w,x〉 + b = 1 (and the
width of this gap is 2

||w||). Thus, we say “vector x lies on the margin” meaning that either

〈w,x〉+ b = −1 or 〈w,x〉+ b = 1. We can also say “vector x lies in the margin” meaning
that 〈w,x〉+ b > −1 and 〈w,x〉+ b < 1.

Note that among all training examples of one class, those located closer to another
class may be considered more difficult to learn since it is easier to confuse them with
examples from another class. Therefore, we can establish the following property of SVM
classifier: of all the given training examples, the most difficult ones, located on the margin
between two classes, have the strongest effect on SVM classifier, while the typical or average
examples, located in the center of classes, as well as the easiest examples, located on
remote boundaries of the classes, have weaker effect on the classifier. A consequence of
this property is that SVM is not sensitive to outliers located far away from the margin.

How many support vectors can a classifier have? The minimum number is two – atNumber of
support
vectors

least one in each class. This follows from the constraint (2.30), which can be rewritten as∑
i: yi=1

αi =
∑

j: yj=−1
αj .

The maximum number is, of course, l – the size of the training set. The fraction of support
vectors in the training set is an important property of the classifier related to its gener-
alization performance and overfitting. The classifier is said to overfit the training data
when it makes few errors while classifying training examples and makes a lot of errors
while classifying new data. The classifier is said to have good generalization performance
when it classifies new data with few errors. Thus, overfitting implies bad generalization

13



performance, and a high fraction of support vectors in the training set is a good indication
that SVM may have overfitted the training data12.

Finally, let us note that the expansion of w into support vectors is not unique, andExpansion of
w into
support
vectors is not
unique

therefore the same optimal hyperplane can be defined by different sets of support vec-
tors. This follows from the fact that solution α of the problem (2.24)-(2.26) is not
necessarily unique, so that expansion (2.29) is not unique, either. The following simple

●

x1

●

x2

●
x3

●

x4

●
x5

configuration gives an example of this situation. Consider points
x1 = (1, 1), x2 = (1, 0), x3 = (1,−1) from class C1, and points
x4 = (−1, 1), x5 = (−1,−1) from class C2 (see the figure on the
right). Parameters of the maximum margin hyperplane separating
these two classes are: w = (1, 0), b = 0. Consider three different
dual solutions for this SVM: α1 = (0.25, 0, 0.25, 0.25, 0.25), α2 =
(0.2, 0.1, 0.2, 0.25, 0.25), and α3 = (0.1, 0.3, 0.1, 0.25, 0.25). Clearly,
α1 and α2 lead to different sets of support vectors, while α2 and α3

lead to the same sets of support vectors but different expansions of w into support vectors.

3. Maximum margin hyperplane for linearly nonseparable
classes

In real-life classification problems we rarely deal with linearly separable classes. Most of
the time our observations will form classes that no hyperplane can separate without errors.
Here, we will call these classes overlapping13. For overlapping classes, problem (2.2)-(2.4)
becomes infeasible (and the dual problem – unbounded), since there exist now, b that could
satisfy all constraints (2.3), (2.4) at the same time. In this section the idea of maximum
margin hyperplane is generalized for the case of linearly nonseparable classes.

3.1. Primary problem

For overlapping classes, constraints (2.8) cannot be simultaneously satisfied for all training
vectors. We can relax these constraints by introducing error terms ξi, also called slackSlack

variables variables, in the following way:

yi

(
n∑
k=1

wkxik + b

)
≥ 1− ξi, i = 1, 2, ..., l (3.1)

ξi ≥ 0, i = 1, 2, ..., l. (3.2)

12Overfitting is not likely to happen when classes are linearly separable, but it may become a serious
problem when two classes are heavily mixed or when SVM uses a kernel function instead of the inner
product.

13Note that for classes C1 and C2 it is always assumed in this tutorial that C1 ∩C2 = ∅. Our definition
of overlapping classes does not imply the opposite. However, it implies that conv(C1) ∩ conv(C2) 6= ∅,
where conv(C1) and conv(C2) denote convex hulls of C1 and C2.
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If we consider minimizing objective function

1

2

n∑
k=1

w2
k → min

w,b,ξ
(3.3)

with constraints (3.1)-(3.2), we will find that it can be made arbitrarily small because any
vector w can be made feasible by using freedom in the choice of slack variables ξi. To
make this problem meaningful, we should also seek minimization of error terms, which is
usually achieved by adding their sum to the objective function (3.3):

Soft margin
SVM

1

2

n∑
k=1

w2
k + C

l∑
i=1

ξi → min
w,b,ξ

(3.4)

s.t.

yi

(
n∑
k=1

wkxik + b

)
≥ 1− ξi, i = 1, 2, ..., l (3.5)

ξi ≥ 0, i = 1, 2, ..., l. (3.6)

Here C is a positive constant balancing two different goals: maximizing the margin and
minimizing the number of errors on the training data. We will consider this parameter in
more detail in the next subsection.

Optimization problem (3.4)-(3.6) defines so called soft margin SVM, as opposed to
the hard margin SVM which we considered in section 2. For a soft margin SVM, we
want to find a separating hyperplane with the maximum margin, we allow training vectors
to lie inside the margin or to be missclassified, and we want the overall error measured
by the sum of slack variables to be minimized. Note that when two classes are linearly
separable, problem (3.4)-(3.6) will have the same solution as problem (2.2)-(2.4). Therefore,
optimization problem (3.4)-(3.6) can be used as a general formulation that defines SVM
on arbitrary training set, regardless of linear separability of two classes.

If w∗, b∗ is a solution of (3.4)-(3.6) then hyperplane 〈w∗,x〉+ b∗ = 0 is called optimalMargin for
hyperplane
and linearly
nonseparable
classes

or maximum margin hyperplane. What exactly do we mean by hyperplane’s margin when
we consider two overlapping classes? In section 1, margin was defined for a hyperplane and
two linearly separable classes. In section 2, it was shown that for the maximum margin
hyperplane its margin is

• as a number: 2
||w∗||

• as a part of space: the gap between 〈w∗,x〉+ b∗ = 1 and 〈w∗,x〉+ b∗ = −1

The same is assumed for a soft margin hyperplane: its margin is defined as the region
between hyperplanes 〈w∗,x〉 + b∗ = 1 and 〈w∗,x〉 + b∗ = −1, although this region is not
anymore the gap between the optimal hyperplane and two classes.

Minimization of quadratic objective function (3.4) subject to linear constraints (3.5)-
(3.6) is a problem of quadratic programming. This function is convex, but in contrast
to function (2.5) is not strictly convex (since its Hessian is positive semidefinite). This
implies that solution w∗, b∗, ξ∗ of problem (3.4)-(3.6) is not unique. Problem (3.4)-(3.6)
will always have solution, unless the training set contains only one class, in which case the
problem will be unbounded.
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Figure 8: Values of slack variables ξi shown for training points from C1 (white points).
Optimal hyperplane π is defined by 〈w,x〉+b = 0, π1 is defined by 〈w,x〉+b = 1, and π2 is
defined by 〈w,x〉+b = −1. The margin is the region between π1 and π2. Margin expansion
may increase the overall error. Note that points located in the margin will always have
ξi > 0, even when they are correctly classified by the hyperplane.

3.2. Parameter C

As we noted before, soft margin SVM has one parameter which should be adjusted by
the user: a positive constant C in objective function (3.4). This parameter balances two
different goals: maximizing the margin and minimizing the number of errors on the training
data. These goals may be conflicting, since margin expansion may increase the overall error
(Figure 8). By changing parameter C we can choose to favor one goal over another. This
is illustrated on Figure 9, which shows four separating hyperplanes and their margins,
obtained for the same training set using increasing values of parameter C. Circled are
points with non-zero error terms ξi – they either lie on the wrong side of the hyperplane,
or in the margin. When C is very small, the sum of error terms becomes negligible in
objective function (3.4), so that the goal of optimization is to maximize the margin. As
a result, the margin can be large enough to contain all the points. At another extreme,
when C is very large, the sum of error terms dominates the margin term in objective
function (3.4), so that the goal of optimization is to minimize the sum of error terms. As
a result, the margin can be so small that it does not contain any points. Note that despite
differences in the value of parameter C and the size of the margin, all four hyperplanes
shown in Figure 9 are fairly similar, and they all correctly classify the same training points.

Clearly, values of parameter C do not have absolute meaning. They are related to the
number of training points and the range of data. In the example shown on Figure 9, we
have a training set consisting of 14 points whose abscissa (horizontal coordinate) varies
between 20 and 80, and the ordinate (vertical coordinate) – between 15 and 55. Note that
it is possible to make C independent of the number of training points if C 1

l

∑l
i=1 ξi term

is used instead of C
∑l

i=1 ξi in objective function (3.4). Note also that Figure 9 suggests
that the tuning of parameter C should be done on a logarithmic scale. This is indeed aTuning of

parameter C good approach for many practical applications.
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Figure 9: Optimal separating hyperplanes and their margins obtained for the same training
set by using different values of parameter C. Circled are points with ξi > 0.

In addition to balancing the goals of margin maximization and error minimization,Classes with
different cost
of misclassifi-
cation

parameter C also provides a convenient way to deal with situations when the cost of
misclassification is different for points from C1 and C2. For example, if the cost of mis-
classification a point from C1 is two times higher then the cost of misclassification a point
from C2, then instead of objective function (3.4) we can consider objective function

1

2

n∑
k=1

w2
k + C̃1

∑
i: yi=1

ξi + C̃2

∑
i: yi=−1

ξi → min
w,b,ξ

(3.7)

where C̃1/C̃2 = 2. This trick also allows to handle situations with unbalanced classes, whenClasses
unbalanced in
size

the number of training points from one class significantly exceeds the number of training
points from another class. Given unbalanced training data, SVM classifier will tend to
have higher accuracy on larger class, and lower accuracy on smaller class. To level these
accuracies, objective function (3.7) can be used, where C̃1 > C̃2 if C1 is smaller than C2.

3.3. Dual problem

The derivation of the dual for problem (3.4)-(3.6) exactly follows the derivation of the
dual for problem (2.13)-(2.14), considered in subsection 2.2. We start from the general
definitions of the dual problem (2.15)-(2.16) and dual function (2.17), which in our case
will include two extra sets of variables: ξ = (ξ1, ξ2, ..., ξl), and β = (β1, β2, ..., βl) (together
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with constraints βi ≥ 0), because for problem (3.4)-(3.6) the Lagrangian is defined as

L(w, b, ξ,α,β) =
1

2

n∑
k=1

w2
k + C

l∑
i=1

ξi

−
l∑

i=1

αi

(
yi

(
n∑
k=1

wkxik + b

)
− 1 + ξi

)
−

l∑
i=1

βiξi . (3.8)

Since the Lagrangian is a convex function in our case14, for any α and β point (w∗, b∗, ξ∗)
is the global minimum of L(w, b, ξ,α,β) if and only if

∇w,b,ξL(w∗, b∗, ξ∗,α,β) = 0. (3.9)

Thus, Ld(α,β) = L(w∗, b∗, ξ∗,α,β) given that (3.9) is satisfied, and therefore the dual
problem can be stated as

L(w, b, ξ,α,β)→ max
w,b,ξ,α,β

s.t.

∇w,b,ξL(w, b,α) = 0 (3.10)

αi ≥ 0, i = 1, 2, ..., l

βi ≥ 0, i = 1, 2, ..., l.

The constraint (3.10) implies that

∂L

∂wk
= 0, k = 1, 2, ..., n

∂L

∂b
= 0

∂L

∂ξi
= 0, i = 1, 2, ..., l,

which is equivalent to

wk =

l∑
i=1

αiyixik, k = 1, 2, ..., n (3.11)

l∑
i=1

αiyi = 0

αi + βi = C, i = 1, 2, ..., l. (3.12)

From (3.12) we get βi = C − αi, and after plugging this into the Lagrangian (3.8) slack
variables ξi cancel out. Thus, we arrive to the Lagrangian of the form (2.18) defined
previously for a separable case. Condition (3.12) also has another implication: since βi ≥ 0,
we must have αi ≤ C.

14Because it is a convex function plus/minus linear functions.

18



Substituting (3.11) into (2.18), we get the final form of the dual problem for the soft-
margin SVM:

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyj〈xi,xj〉 → max
α

(3.13)

s.t.

l∑
i=1

αiyi = 0 (3.14)

0 ≤ αi ≤ C, i = 1, 2, ..., l. (3.15)

Note that this dual is almost identical to the dual (2.24)-(2.26) derived for the case of
linearly separable classes; the only difference is that here dual variables αi have additional
constraints – they are upper bounded by C. Thus, everything that we said in subsection
2.2 about the connection between the dual and the primal problems, as well as between
the dual and primal solutions, is also true for the case of soft margin SVM15.

Note also that the fact that the dual variables αi are upper bounded by C implies that
in soft margin SVM the influence of each training point on the separating hyperplane is
limited, which makes it less sensitive to the outliers located close to the margin.

3.4. Support vectors

Just like in a separable case, equation (3.11) implies that if (w, b) is the primal solution of
(3.4)-(3.6), and α is the dual solution, then

w =
l∑

i=1

αiyixi. (3.16)

Training vectors xi for which αi > 0 are called support vectors of the hyperplane. Where
are these vectors located? Using reasoning similar to what we used in subsection 2.3, it is
easy to show that for the training vectors from the first class coefficients αi are equal to
zero when 〈w,x〉+ b > 1; range between 0 and C when 〈w,x〉+ b = 1; and are equal to C
when 〈w,x〉+ b < 1 (Figure 10). Thus, in contrast to a hard margin SVM, whose support
vectors are located on the margin between two classes (Figure 7), support vectors of a soft
margin SVM may be located either on the margin between two classes, in the margin, or
outside the margin and on the wrong side of the hyperplane. Also, the number of support
vectors for a soft margin classifier is affected by parameter C: when we decrease C, the
margin expands and the number of support vectors may grow.

15Except that the primal problem for the soft margin SVM can never be infeasible.
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Figure 10: Regions of values for coefficients αi, for training points from C1 (white points).
Optimal hyperplane π is defined by 〈w,x〉+ b = 0, π1 is defined by 〈w,x〉+ b = 1, and π2
is defined by 〈w,x〉+ b = −1. Support vectors are those points that have αi > 0. Support
vectors from C1 are circled.

4. SVM with kernels

In the context of SVM, a kernel k(x, z) is a special function which is used in dual problem
(3.13)-(3.15) and in decision function (2.1) instead of the inner product 〈x, z〉. The use of
kernels allows us to define SVMs which instead of hyperplanes utilize a much wider class
of separating surfaces. When we use a kernel k, we implicitly define (not necessarily in
a unique way) some new space H (called feature space) and a mapping Φ (called feature
mapping) which transforms our original space Rn to H. In this new space H we seek the
usual maximum margin hyperplane separating our transformed data by solving problem
(3.4)-(3.6). For the majority of kernels mapping Φ is non-linear, so that the maximum
margin hyperplane in H corresponds to a non-linear (and sometimes quite complex) sepa-
rating surface in Rn. By using non-linear surfaces we can expect to get better separation
of given classes than by using a hyperplane. Put differently, given classes may be better
separated with a hyperplane when they are non-linearly transformed into another space,
especially when this new space has more dimensions than the original one.

4.1. Kernel trick

Consider white and black points shown in Figures 11a and 11c. Clearly, there is no way to
achieve good separation of these points using a hyperplane (that is, using a point in case
of one-dimensional space, Figure 11a, and a line in case of two-dimensional space, Figure
11c). Let us define the following mappings:

Φ1 : x = (x1) → Φ1(x) = (x1, x
2
1) (4.1)

Φ2 : x = (x1, x2) → Φ2(x) = (x21, x
2
2,
√

2 x1x2). (4.2)
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These mappings transform linearly nonseparable classes shown in Figures 11a, 11c into
linearly separable classes shown in Figures 11b, 11d, respectively. Note that these mappings
are non-linear, and they increase the dimensionality of data.
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Figure 11: (a), (c) Examples of linearly nonseparable classes (white and black points))
in one- and two-dimensional spaces. (b), (d) Mappings Φ1 and Φ2 transform classes into
spaces of higher dimensionality where they become linearly separable.

Assume we have a mapping Φ from our original space Rn to a new space H, and we
want to find the optimal separating hyperplane in the space H. To do this, we should
transform our training set x1,x2, ...,xl from Rn into Φ(x1),Φ(x2), ...,Φ(xl) from H, and
solve the following problem:

1

2
||w||2 + C

l∑
i=1

ξi → min
w,b,ξ

(4.3)

s.t.

yi

(
〈w,Φ(xi)〉+ b

)
≥ 1− ξi, i = 1, 2, ..., l (4.4)

ξi ≥ 0, i = 1, 2, ..., l, (4.5)

where w ∈ H, and the norm and the inner product used in this problem are defined in H.
In order to classify a new point x from Rn, we need to find its image Φ(x) in the space
H, and then use the decision function

f(x) = sgn{〈w,Φ(x)〉+ b}. (4.6)
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It turns out that there is another, more convenient approach to define an SVM thatKernel trick
uses given data transformation Φ. It is called the kernel trick. Let us write the dual
problem for (4.3)-(4.5):

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyj〈Φ(xi),Φ(xj)〉 → max
α

(4.7)

s.t.

l∑
i=1

αiyi = 0 (4.8)

0 ≤ αi ≤ C, i = 1, 2, ..., l. (4.9)

Using (3.16), decision function (4.6) can be rewritten as

f(x) = sgn{
l∑

i=1

αiyi〈Φ(xi),Φ(x)〉+ b}. (4.10)

It is easy to note now that the knowledge of 〈Φ(x),Φ(z)〉 for every x and z from Rn

is enough to solve problem (4.7)-(4.9) and to use decision function (4.10)16. Therefore, if
we denote 〈Φ(x),Φ(z)〉 by k(x, z), we can seek separating surface in the original space Rn

simply by using k(x, z) instead of 〈Φ(x),Φ(z)〉, and avoid the need to explicitly map our
data from Rn to H. Consequently, the dual (4.7)-(4.9) can be rewritten as

l∑
i=1

αi −
1

2

l∑
i=1

l∑
j=1

αiαjyiyj k(xi,xj)→ max
α

(4.11)

s.t.

l∑
i=1

αiyi = 0 (4.12)

0 ≤ αi ≤ C, i = 1, 2, ..., l, (4.13)

while decision function (4.10) becomes

f(x) = sgn{
l∑

i=1

αiyi k(xi,x) + b}. (4.14)

The function k(x, z) used instead of 〈Φ(x),Φ(z)〉 is called a kernel defined by mapping Φ.
Going back to our example, consider mapping Φ2 defined by equation (4.2). Note that

〈Φ2(x),Φ2(z)〉 = 〈(x21, x22,
√

2 x1x2), (z
2
1 , z

2
2 ,
√

2 z1z2)〉
= x21z

2
1 + x22z

2
2 + 2x1x2z1z2

= (x1z1 + x2z2)
2

= 〈x, z〉2. (4.15)

16In fact, to solve problem (4.7)-(4.9) we only need to know 〈Φ(x),Φ(z)〉 for every pair of training points.
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Therefore, k(x, z) = 〈x, z〉2 is the kernel function defined by mapping Φ2, and if we want
to build an SVM in the new space R3 obtained from R2 with the help of mapping (4.2),
we can still use training points and inner product from R2 – we should simply substitute
〈Φ(x),Φ(z)〉 in (4.7) and (4.10) by 〈x, z〉2.

The natural extension of this approach will be the following. If we have some “suitable”
function k(x, z) to use instead of 〈x, z〉, we can define an SVM without even knowing
mapping Φ(x). And “suitable” would be any function that could be represented through
the inner product in some space H. Now we are ready to give a formal definition of kernels.

4.2. Kernels

Let V be the n-dimensional real coordinate space Rn or any other vector space. A kernel
k is a mapping from V × V to R such that there exist space H supplied with the inner
product 〈., .〉, and a mapping Φ from V to H, so that for arbitrary x, z from V

k(x, z) = 〈Φ(x),Φ(z)〉. (4.16)

Space H is often called feature space, and mapping Φ is called feature mapping. Two
properties of kernels immediately follow from the definition.

1. Since the inner product is a symmetric function, so must be a kernel: k(x, z) =
k(z,x) for any x and z.

2. Consider a set of m arbitrary vectors z1, z2, ...,zm and form a square m×m matrix
K(z1, z2, ...,zm) = (k(zi, zj)). Since k is a kernel, there exist H and Φ such that
k(zi, zj) = 〈Φ(zi),Φ(zj)〉. Thus, matrix K(z1, z2, ...,zm) is the Gramian matrix of
the set of vectors Φ(z1),Φ(z2), ...,Φ(zm) and therefore it must be positive semidef-
inite. Function k(x, z) that defines a positive semidefinite matrix K(z1, z2, ...,zm)
for any z1, z2, ...,zm is called positive semidefinite17.

Thus, any kernel is a symmetric and positive semidefinite function. Is the converse
true? Namely, is it true that any symmetric and positive semidefinite function is a kernel?
It is proved in Mercer’s theorem that this indeed is true: for any such function we can
always find an infinite-dimensional space H and mapping Φ such that (4.16) holds. Thus,
the symmetry and positive semidefiniteness of a function are sometimes called Mercer’sMercer’s

conditions conditions (for a function to be a kernel).
For SVMs, kernels can be regarded as a generalization of the inner product. As we

showed in the previous subsection, we do not have to know H and Φ to use k. Also, for a
given kernel k neither the mapping Φ nor the space H are uniquely defined (see an example
with the polynomial kernel below).

What happens if a function that does not satisfy Mercer’s conditions is used as a
kernel? Specifically, assume that the more restrictive of the two conditions is violated –
that of a function being positive semidefinite. This means that for some set of vectors
z1, z2, ...,zm matrix K(z1, z2, ...,zm) is not positive semidefinite, i.e., it is either indefinite
or negative semidefinite. If K(x1,x2, ...,xl) is yet positive semidefinite for our training
set x1,x2, ...,xl then optimization problem (4.11)-(4.13) remains concave and has either a

17Sometimes instead of positive semidefinite such function is called positive definite.
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single global maximum or many global maxima. In this case we will be able to solve it and
find the optimal separating hyperplane, although geometrical properties of this hyperplane
(maximum margin subject to given penalty C for errors) may not be valid. If, however,
K(x1,x2, ...,xl) is indefinite or negative semidefinite, objective function (4.11) may become
unbounded in the feasible region defined by constraints (4.12), (4.13), which means that
we will not be able to solve the problem (4.11)-(4.13).

It is easy to prove the following statements which may be helpful for constructingConstructing
new kernels kernels. Suppose k1(x, z) and k2(x, z) are two kernels defined on V × V . Then the

following functions are also kernels:

• αk1(x, z) + βk2(x, z), α ≥ 0, β ≥ 0

• k1(x, z) k2(x, z)

If f(x) is a real-valued function defined on V then the following functions are kernels:

• k(x, z) = f(x)f(z)

• k1(f(x), f(z))

In the next two subsections we consider in detail two examples of kernel functions:
polynomial and Gaussian radial basis functions.

4.3. Polynomial kernel

Polynomial kernel is defined as
k(x, z) = 〈x, z〉d, (4.17)

where d ≥ 2 is an integer number. We already know kernel 〈x, z〉2 from subsection 4.1,
where it was defined for x, z ∈ R2. We showed that this kernel can be represented through
the inner product in the feature space R3 given the feature mapping

Φ2 : (x1, x2) → (x21, x
2
2,
√

2 x1x2).

As was noted above, for a given kernel the corresponding feature space H and feature
mapping Φ are not uniquely defined. For example, for kernel 〈x, z〉2 we can consider an
alternative feature space R4 with the feature mapping

Φ3 : (x1, x2) → (x21, x
2
2, x1x2, x2x1).

For polynomial kernel of degree d defined for x, z ∈ Rn, it is convenient to consider
feature space H with coordinates corresponding to all ordered monomials of variables
x1, x2, ..., xn of degree d, since

〈x, z〉d =

(
n∑
i=1

xizi

)d

=

n∑
j1=1

n∑
j2=1

...

n∑
jd=1

xj1xj2 ...xjdzj1zj2 ...zjd . (4.18)
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That is, mapping Φ is defined as a transformation of vector x = (x1, x2, ..., xn) into a vector
containing all possible ordered terms of the form xj1 ×xj2 × ...×xjd , where j1, j2, ..., jd are
independent indices running from 1 to n. The number of such monomials is equal to the
number of ways to choose d elements from n if repetitions are allowed, so the dimensionality
of space H is

dimH =

(
n+ d− 1

d

)
.

Polynomial kernel may be defined in a more general form as

k(x, z) = (〈x, z〉+ p)d, (4.19)

where p ≥ 0. Using the binomial formula to expand (4.19) and transformations similar
to (4.18), it is possible to show that for this kernel one of the possible mappings Φ maps
x = (x1, x2, ..., xn) into a vector of all possible monomials of degree no larger than d.

Finally, the most general form of the polynomial kernel is

k(x, z) = (q〈x,xi〉+ p)d, (4.20)

where q > 0, p ≥ 0. Note that (q〈x, z〉 + p)d = d
√
q(〈x, z〉 + p/q)d, which is essentially

kernel (4.19) multiplied by constant d
√
q.

Heatmaps on Figure 12 show separation of two classes of points (first class – white
points, second class – black points) from R2 produced by SVMs with various polynomial
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Figure 12: Heatmaps showing separation of two classes of points by using SVM with
polynomial kernel k(x, z). C = 1 in all four examples; b varies between 0.01 and 0.88.
Support vectors are circled.
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kernels. On these heatmaps each point x is colored according to the corresponding value
of function

l∑
i=1

αiyi (q〈x,xi〉+ p)d + b, (4.21)

which is the core part of decision function (4.14). Positive values of function (4.21) are
colored by orange colors and correspond to the classification decision “assign to the first
class”; negative values of function (4.21) are colored by blue colors and correspond to the
classification decision “assign to the second class”. Separating surface is depicted by white
color corresponding to the decision boundaries where (4.21) is equal to zero18. Notice
how small changes in the parameters of the polynomial kernel substantially change the
separating surface.

4.4. Gaussian radial basis function kernel

Gaussian radial basis function (GRBF) kernel, or simply Gaussian kernel, is defined by the
following equation:

k(x, z) = e−
||x−z||2

2σ2 , (4.22)

where σ > 0. Sometimes it is also written as

k(x, z) = e−γ||x−z||
2
,

where γ = 1
2σ2 . Note the similarity between GRBF and Gaussian probability density func-

tion. When x and z are real numbers and z is fixed, function k(x, z) has a bell-shaped
graph centered at point z, whose width is directly proportional to σ (and inversely pro-
portional to γ) (Figure 13).

Any feature space H corresponding to Gaussian kernel is infinite-dimensional. This
can be proved by showing that for any set of distinct vectors z1, z2, ...,zm ∈ V matrix
(k(zi, zj))m×m is not singular, which means that vectors Φ(z1),Φ(z2), ...,Φ(zm) are linearly
independent. For Gaussian kernel, in contrast to the polynomial kernel, interpretation of
the corresponding feature space H is more complicated. We will only notice that H is an
infinite-dimensional Hilbert space which can be exemplified by a space of infinite numerical
sequences or by a space of functions with certain properties.

What does the separating surface of an SVM with Gaussian kernel look like? Consider
the decision function

f(x) = sgn{
l∑

i=1

αiyie
− 1

2σ2
||x−xi||2 + b}, (4.23)

where non-zero αi correspond to support vectors xi. For each support vector, we have a
“local” bell-shaped surface centered at this vector. For vectors from positive class (yi > 0)

this surface is “positive” (αiyie
− 1

2σ2
||x−xi||2 > 0), while for vectors from negative class

18Note that the color legend on each heatmap on Figure 12 shows artificially compressed range of values of
the corresponding function (4.21). For example, for kernel k(x,z) = (〈x,z〉+ 0.1)2 function (4.21) actually
takes values higher than 1 and lower than -1 on the domain shown on Figure 12, but on the heatmap those
values are depicted by the same color as 1 or -1.
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O
●

2σ

Figure 13: Graph of function e−
x2

2 (z = 0, σ = 1). The length of the blue line segment
with arrows is equal to 2σ = 2 (this number is often called the width of the bell shape);
the segment connects two inflection points of the function.

(yi < 0) this surface is “negative” (αiyie
− 1

2σ2
||x−xi||2 < 0). The resulting surface is the

superposition (sum) of these local “positive” and “negative” bell-shaped surfaces.
Heatmaps on Figure 14 show separation of two classes of points (first class – white

points, second class – black points) from R2 produced by SVMs with various Gaussian
kernels. On these heatmaps each point x is colored according to the corresponding value
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Figure 14: Heatmaps showing separation of two classes of points by using SVM with
Gaussian kernel with different values of σ. C = 1 in all four examples; b varies between 0
and 0.08. Support vectors are circled.
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of function
l∑

i=1

αiyie
− 1

2σ2
||x−xi||2 + b, (4.24)

which is the core part of decision function (4.23). Positive values of function (4.24) are
colored by orange colors and correspond to the classification decision “assign to the first
class”; negative values of function (4.24) are colored by blue colors and correspond to the
classification decision “assign to the second class”. Separating surface is depicted by white
color corresponding to the decision boundaries where (4.24) is equal to zero.

Note that on Figure 14a the width of each “local” bell-shaped surface is smaller than
the minimum distance between the points, so that these surfaces do not affect each other.
This results in the separating surface that perfectly divides two classes of points but, being
too detailed, overfits the data. On Figures 14b-14d, the width of each “local” surface is
increasing, and they begin to affect each other. This results in the separating surface that
defines more generalized shapes of the classes. This example shows that the practical range
of variation for 2σ should be between the minimum and maximum distance between points
in given training data.
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Appendix

Here we provide some definitions and results related to vector spaces and optimization that
are used in the tutorial. Detailed treatment of these topics can be found, for example, in
the following books:

[1] D. G. Luenberger. Optimization by Vector Space Methods. John Wiley & Sons, 1997.

[2] D. G. Luenberger. Linear and Nonlinear Programming. Springer, 2nd edition, 2003.

[3] I. Griva, S. G. Nash, and A. Sofer. Linear and Nonlinear Optimization. SIAM, 2nd
edition, 2009.

A1. Real coordinate space, inner product, norm, distance

The n-dimensional real coordinate space Rn is a set of all vectors x = (x1, x2, ..., xn), where
xi is a real number. Two operations are defined in Rn: componentwise addition of two
vectors, and componentwise multiplication of a vector by a real number. It is easy to prove
that these operations possess a set of natural properties which make them similar to the
addition and multiplication of real numbers in R (and make Rn an instance of a vector
space). In particular, in Rn there is a null vector (0, 0, ..., 0) which, when added to any
vector x, will not change it. To make explicit distinction between the real number zero
from R and the null vector from Rn, we will denote the latter by bold zero symbol 0:
0 = (0, 0, ..., 0). Terms “vector” and “point” are used interchangeably to call elements of
Rn.

For arbitrary vector space V , the inner product (also called the dot product or scalarInner product
〈x1,x2〉 product) is defined as a mapping from V × V to R that satisfies the following axioms for

any x1,x2 ∈ V and α ∈ R:

1. 〈x1,x2〉 = 〈x2,x1〉 symmetry

2. 〈αx1,x2〉 = α〈x1,x2〉

3. 〈x1 + x3,x2〉 = 〈x1,x2〉+ 〈x3,x2〉

4. 〈x,x〉 ≥ 0; 〈x,x〉 = 0 if and only if x = 0.

linearity

This definition generalizes the concept of dot product defined in geometry as the length
of vector x1 multiplied by the length of vector x2 multiplied by the cosine of the angle
between the two vectors:

〈x1,x2〉 = |x1||x2| cos(x1,x2),

which is nothing but the length of projection of vector x1 onto vector x2, multiplied by
the length of vector x2 (or, equivalently, the length of projection of vector x2 onto vector
x1, multiplied by the length of vector x1).

In an abstract vector space where an inner product has been defined following above
axioms, one can introduce a measure of vector length called the norm:Norm ||x||

||x|| =
√
〈x,x〉 .
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Using the norm, the distance between two vectors can be introduced as

ρ(x1,x2) = ||x1 − x2||.

The distance between vector x1 and set of vectors S is defined as

ρ(x1, S) = min
x2∈S

ρ(x1,x2).

In Rn, all these concepts can be defined as follows:

1. Inner product:

〈x1,x2〉 =
n∑
k=1

x1kx2k,

where xik is the k-th component of vector xi.

2. Norm:

||x|| =

√√√√ n∑
k=1

x2k .

3. Distance:

ρ(x1,x2) =

√√√√ n∑
k=1

(x1k − x2k)2 .

A2. Optimization problems: basic terminology

Consider the following constrained optimization problem:

f(x)→ min
x

(A.1)

s.t.

h1(x) = 0, ... , hm(x) = 0 (A.2)

g1(x) ≤ 0, ... , gp(x) ≤ 0. (A.3)

Note that maximization of function f can be equivalently rewritten as minimization of
function f̃ = −f , and inequality of the form gi(x) ≥ 0 can be equivalently rewritten as
g̃i(x) ≤ 0, where g̃i = −gi.

Point x that satisfies constraints (A.2)-(A.3) is called a feasible solution of optimizationFeasible
solution problem (A.1)-(A.3) or simply feasible point. A set of all feasible points is called feasible

region (or feasible set) defined by constraints. Optimization problem is called infeasible if
given constraints define empty feasible region.

Point x∗ is called a local solution of optimization problem (A.1)-(A.3) if it is feasibleLocal and
global
solutions

and f(x∗) ≤ f(x) for all feasible x from some neighborhood of x∗, that is, for all feasible
x such that ||x∗ − x|| ≤ ε for some ε > 0.

Point x∗ is called a global solution of optimization problem (A.1)-(A.3) if it is feasible
and f(x∗) ≤ f(x) for all feasible x.

If for any feasible x there exist feasible x′ such that f(x′) < f(x) then optimizationUnbounded
problem problem (A.1)-(A.3) is called unbounded.

An optimization problem may have a single solution, many solutions, or no solutions
at all. Unbounded problem cannot have a global solution but can have local solutions.
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A3. Necessary and sufficient conditions for local solutions of optimization
problems

Table 1 summarizes necessary and sufficient conditions for a local solution of unconstrained
and constrained optimization problems. We consider minimization of a function f of one
or many variables. First-order conditions for problems (A), (B), (C), and (D) are written
under assumption that functions f, hi, gi are differentiable. Second-order conditions for
problems (A) and (B) assume that f is twice differentiable, while second-order conditions
for problems (C) and (D) assume that f, hi, gi are twice differentiable, their second deriva-
tives are continuous functions, and x∗ is a regular point of the constraints (see the end of
this subsection).

For a function of one or many variables, in case when no constraints are given (problems
(A) and (B)), a local minimum must be a stationary point, that is, a point where the first
derivative of the function is zero, or all first partial derivatives are zero (i.e., the gradient
of the function is zero). If the second derivative is positive in a stationary point x∗, or,
for a function of many variables, the matrix of second-order derivatives (the Hessian) is a
positive definite matrix, then f is strictly convex in some neighborhood of x∗ and therefore
x∗ is a strict local minimum19.

For optimization problems with constraints (problems (C) and (D)), conditions for a
local solution can be written very similar to the case without constraints by using the
Lagrange function L (also called the Lagrangian). Variables λi and µi used to define the
Lagrange function L are called Lagrange multipliers. Note that in Karush-Kuhn-Tucker
conditions values λ∗i of the variables λi associated with equality constraints may have
arbitrary sign, while values µ∗i of the variables µi associated with inequality constraints
gi(x) ≤ 0 must be nonnegative.

Let us reformulate the necessary condition for a local solution of problem (C) written
by using the notation of the Lagrangian. Equation ∇L(x∗,λ∗) = 0 is equivalent to

∇xL(x∗,λ∗) = 0

∇λL(x∗,λ∗) = 0.

The first equation expands to

∇f(x∗) +
m∑
i=1

λ∗i∇hi(x∗) = 0,

which means that in the point of the local constrained minimum the gradient of the ob-
jective function is a linear combination of the gradients of the constraints. The second
equation expands to

h1(x
∗) = 0, h2(x

∗) = 0, ... , hm(x∗) = 0,

which simply restates that x∗ is feasible. From this we can see that requirements∇L(x∗,λ∗) =
0 and ∇L(x∗,λ∗,µ∗) = 0 used in the sufficient conditions for problems (C) and (D) imply
that x∗ is feasible.

19Matrix A is called positive definite if xAxT =
∑n
i=1

∑n
j=1 aijxixj > 0 for any x 6= 0. It is called

positive semidefinite if xAxT ≥ 0 for any x.
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Table 1: Necessary and sufficient conditions for a local solution of unconstrained and constrained optimization problems (continued
on the next page).

Optimization problem Necessary conditions for a local solution x∗ Sufficient conditions for a local solution x∗

(first-order conditions) (second-order conditions)

(A) f(x)→ min f ′(x∗) = 0 f ′(x∗) = 0, f ′′(x∗) > 0

Function of one variable The first derivative is zero The first derivative is zero,
and the second derivative is positive

(B)
x = (x1, x2, ..., xn)

f(x)→ min
∇f(x∗) =


∂f
∂x1

∂f
∂x2

...

∂f
∂xn

 = 0 ∇f(x∗) = 0, F(x∗) =

 ∂2f
∂x1∂x1

... ∂2f
∂x1∂xn

... ...
∂2f

∂xn∂x1
... ∂2f

∂xn∂xn

 > 0

Function of many variables The gradient of the function is zero The gradient of the function is zero,
and the Hessian matrix is positive definite

(C)

f(x)→ min

s.t.

h1(x) = 0, ... , hm(x) = 0

There exist numbers λ∗1, λ
∗
2, ..., λ

∗
m such that

∇L(x∗,λ∗) = 0

where L(x,λ) = f(x) +

m∑
i=1

λihi(x)

There exist numbers λ∗1, λ
∗
2, ..., λ

∗
m such that

∇L(x∗,λ∗) = 0, L(x∗,λ∗) > 0

Function of many variables
and equality constraints

The gradient of the Lagrangian is zero The gradient of the Lagrangian is zero,
and the Hessian matrix of the Lagrangian
is positive definite
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Table 1: Necessary and sufficient conditions for a local solution of unconstrained and constrained optimization problems (continued
from the previous page).

Optimization problem Necessary conditions for a local solution x∗ Sufficient conditions for a local solution x∗

(first-order conditions) (second-order conditions)

(D)

f(x)→ min

s.t.

h1(x) = 0, ... , hm(x) = 0

g1(x) ≤ 0, ... , gp(x) ≤ 0

There exist numbers λ∗1, λ
∗
2, ..., λ

∗
m, and

µ∗1 ≥ 0, µ∗2 ≥ 0, ..., µ∗p ≥ 0 such that

∇L(x∗,λ∗,µ∗) = 0,

p∑
i=1

µ∗i gi(x
∗) = 0, where

L(x,λ,µ) = f(x) +
m∑
i=1

λihi(x) +

p∑
i=1

µigi(x)

There exist numbers λ∗1, λ
∗
2, ..., λ

∗
m, and

µ∗1 ≥ 0, µ∗2 ≥ 0, ..., µ∗p ≥ 0 such that

∇L(x∗,λ∗,µ∗) = 0,

p∑
i=1

µ∗i gi(x
∗) = 0

L(x∗,λ∗,µ∗) > 0

Function of many variables,
equality and inequality
constraints

Karush-Kuhn-Tucker conditions The gradient of the Lagrangian is zero,
and the Hessian matrix of the Lagrangian
is positive definite
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As we noted earlier, the necessary conditions for a local solution x∗ of problems (C)
and (D) are valid under assumption that x∗ is a regular point of the constraints. For
problem (C), which has equality constraints only, point x∗ is called regular if vectors
∇h1(x∗),∇h2(x∗), ...,∇hm(x∗) are linearly independent. For problem (D), which also has
inequality constraints, point x∗ is called regular if vectors ∇h1(x∗),∇h2(x∗), ...,∇hm(x∗),
∇gj1(x∗),∇gj2(x∗), ...,∇gjt(x∗) are linearly independent, where j1, j2, ..., jt are all indices
such that gj1(x∗) = 0, gj2(x∗) = 0, ..., gjt(x

∗) = 0.

A4. Convexity

Set S is called convex if for any two points x1 and x2 from S a point tx1 + (1− t)x2 alsoConvex set
belongs to S for any t : 0 ≤ t ≤ 1. This means that for any two points from a convex set,
the segment connecting these points also belongs to the set.

Function f(x) defined on a convex set S is called convex ifConvex
function

f(tx1 + (1− t)x2) ≤ tf(x1) + (1− t)f(x2) (A.4)

for any x1 and x2 from S, and any number t : 0 ≤ t ≤ 1. Note that if S is not a convex set
then function f cannot be convex on S. If instead of (A.4) function f satisfies analogous
strict inequality for any x1 and x2 from S, x1 6= x2, and any t : 0 < t < 1, then f is called
strictly convex.

Function f defined on a convex set S is called concave (strictly concave) if function −fConcave
function is convex (strictly convex) on S.

A simplest example of convex function is the square function f(x) = x2 or f(x) =
||x||2 =

∑n
i=1 x

2
i . Function f(x) = x3 is convex on the set S1 = {x : x ≥ 0} and concave

on the set S2 = {x : x ≤ 0}. Linear functions – that is, functions of the form f(x) = ax+ b
or f(x) =

∑n
k=1 akxk + b – are convex and concave simultaneously on their entire domain.

A function f(x) defined on a convex set S, having two continuous derivatives, is convex
if and only if the Hessian F(x) of f(x) is positive semidefinite for all x ∈ S. If F(x) is
positive definite for all x ∈ S, then f(x) is strictly convex on S. However, the converse is
not true.

For a convex function f , first-order necessary conditions for a local minimizer listed inMinimization
of convex
function

the second column of Table 1 for problems (A) and (B) are sufficient conditions. They
are also sufficient conditions for a local minimizer for problems (C) and (D) when these
problems are convex, that is, when in addition to convexity of f , each hi is linear and each
gi is convex.

A local minimum of a convex function is also its global minimum. If function has global
minimum and is strictly convex, then the global minimum is unique.

It was mentioned in subsection A3 that the necessary conditions for a local solution
x∗ of problems (C) and (D) are valid under assumption that x∗ is a regular point of
the constraints. For convex optimization problems, this regularity requirement may be
replaced with either one of the following two conditions:

1. All functions hi, i = 1, 2, ...,m, and gi, i = 1, 2, ..., p, are linear.

2. Point x∗ satisfies constraints hi(x
∗) = 0, i = 1, 2, ...,m, and gi(x

∗) < 0, i = 1, 2, ..., p
(this is called Slater condition).
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